

Catalysis Today 30 (1996) 163-170

Novel oxygen storage components for advanced catalysts for emission control in natural gas fueled vehicles

Yun-feng Chang, Jon G. McCarty

SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA

Abstract

Advanced catalysts based on a novel oxygen storage component (OSC) were developed for emission control in natural gas fueled vehicles. The catalysts contain a manganese oxide (MnO_x) as the OSC supported on an inert LaAlO₃ perovskite and a noble metal component (Pd) supported on a separate high surface area refractory material, for example lanthana stabilized Al_2O_3 . The MnO_x has higher oxygen storage capacity, and faster oxygen absorption and oxide reduction rates than the present commercial ceria-stabilized alumina support materials. Temperature programmed techniques and dynamic cycled experiments were used to measure oxygen storage capacity, activity for NO reduction and CO and CH_4 oxidation rates. Durability tests on a physical mixture of $Pd-Mn/LaAlO_3$ and $Pt/Al_2O_3(La)$ demonstrated that a temperature excursion to 950°C for 30 min did not cause significant loss in catalyst activity for either NO reduction or CO or CH_4 oxidation. We have also shown that the MnO_x can be added to conventional three-way catalysts (TWC) to enhance their performance for NO_x reduction and CO or hydrocarbon oxidation.

Keywords: High temperature three-way catalyst (TWC); Oxygen storage component (OSC); Emission control for natural gas fueled vehicles; Manganese oxide (MnO_x)

1. Introduction

Natural gas has received increased attention as an alternative fuel for motor vehicles because of its potential technical, economic, and environmental advantages. Natural gas vehicles (NGV) generate exhaust gas with extremely low photochemical reactivity [1], produce low coldstart CO emission [2], and have zero evaporative emission. On the other hand, NO_x emissions as well as CO and unburned CH₄ (a much more powerful greenhouse gas than CO₂ [3,4]) in NGV exhaust need to be greatly reduced. Conventional three-way catalysts (TWC) currently used for gasoline-vehicle exhaust emission control showed poor methane conversion

for NGV exhaust gas [5]. Therefore, new catalyst formulations are needed to reduce levels of these pollutants in NGV exhaust to meet ultralow emission vehicle (ULEV) standard.

Conventional TWC presently used in automobile catalytic converters work well for reducing CO, hydrocarbons (HCs), and NO_x emissions in strict stoichiometric combustion exhaust. However, most pollution (80%) is produced under conditions outside the stoichiometric window. Therefore, to meet the new stringent emission standards, particularly, the ULEV standards, catalysts which function in a wider air-to-fuel ratio range must be developed. They must be able to supply oxygen to oxidize CO and HCs when exhaust is fuel rich and remove

excess oxygen when it is lean. The key to such catalysts is to find an OSC which has superior performance than Ce-based OSC [6,7]

The objectives of this work was to develop oxygen storage materials with higher capacity, faster oxygen absorption and oxide reduction rates than present commercial ceria supported on alumina, to find supports which have high surface area and highly sintering resistant, and to formulate catalysts to be used for high-temperature three-way emission control for natural gas fueled vehicles.

In this work, we report MnO_x as an OSC supported on a variety of highly refractory materials that can be used for NO_x , CH_4 , and CO reduction in NGV exhaust gas. Both temperature programmed and dynamic cycled techniques were developed and used to measure the oxygen storage capacity and catalytic activity for NO_x , CH_4 , and CO reduction under dynamic cycled conditions similar to that from an engine manifold.

2. Experimental

2.1. Materials

Catalyst supports, LaAlO₃ perovskite, LaAl₁₁O₁₈ (hexaaluminate), and BaAl₁₂O₁₉ (hexaaluminate) were prepared using a sol-gel technique and supercritical drying [8] while lanthanum stabilized Al₂O₃(La), and BaAl₂O₄ spinel were prepared by ball milling and impregnation procedures. 10%Ce/Al₂O₃ was prepared by impregnation. The final calciantion temperature was 1250°C for LaAl₁₁O₁₈, 1025°C for LaAlO₃, 1000°C for BaAl₁₂O₁₉ and 10%Ce/Al₂O₃, 1100°C for Al₂O₃(La), and 800°C for BaAl₂O₄.

2.2. Temperature programmed experiments

Temperature programmed oxidation (TPO) in diluted oxygen, reduction (TPRd) in diluted hydrogen, and reaction (TPR) experiments were carried out in a microreactor. An amount of 0.1 g of catalyst powder was used. Reaction effluents were analyzed by an on-line quadrupole mass spectrometer (EAI).

2.3. Dynamic cycled experiments

Fast (~2 Hz) and slow (0.25 Hz) dynamic cycled experiments were conducted in a dynamic switched flow micro-reactor system illustrated in Fig. 1. The amount of catalyst used was 50 mg in powder form. With balanced resistance to flow (pressure drop across the microreactor bed and a by-pass metering valve) dilute oxygen and pure helium are alternately switched into net reducing mixtures for slow and fast transients.

3. Results and discussion

Fig. 2 gives the X-ray diffraction pattern of 8%Mn supported on LaAlO₃ perovskite. The XRD characteristics are exactly the same as LaAlO₃ alone, indicating that the support is exclusively perovskite phase and after impregnation with Mn salt solution and calcination at 800°C does not change the support. This is also supported by BET surface area measurements

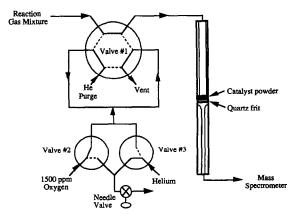


Fig. 1. Schematic diagram of the dynamic switched flow reactor apparatus used for cycling experiments. The needle valve is used to balance pressures to minimize flow bursts and the 6-port valve is used to by-pass the switched-in flow.

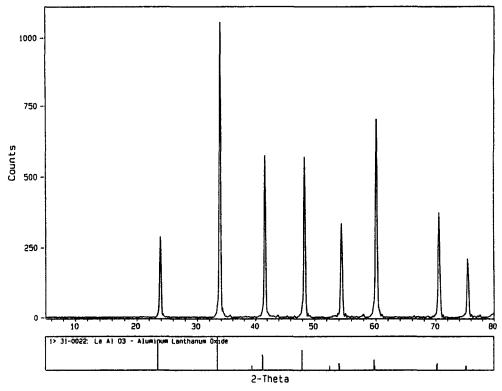


Fig. 2. XRD patterns of LaAlO₃ perovskite loaded with 8 wt% Mn powder sample.

(LaAlO₃: $16.2 \text{ m}^2/\text{g}$ vs. $8\%\text{Mn/LaAlO}_3$: $14.7 \text{ m}^2/\text{g}$) that no significant surface area changes occurred after impregnation.

Table 1 presents the oxygen storage capacity of MnO_x supported on a variety of supports, measured by TPO and TPRd using hydrogen. These results clearly show that Mn/LaAlO₃ catalysts have large OSC. Fig. 3, a typical TPO profile of supported reduced MnO_x on LaAlO₃ perovskite, shows that MnO_x has good O₂ up-

take (oxidation) and O₂ release (reduction) rates at temperatures below 600°C. This performance was confirmed by TPRd and was significantly better than that of ceria-stabilized alumina.

Irreversible formation of complex oxides (aluminates) may be the major reason for industry's past failure to develop stable emission control catalysts using first-row transition metal oxides (Mn, Fe, Co, Ni, Cu). These single metal oxides sinter rapidly when unsupported and irre-

Table 1 Temperature programmed measurements of total OSC of supported MnO_{\star}

Catalyst	OSC by TPO $(\mu \text{mol O}_2/g_{\text{cat}})$	OSC by TPRd $(\mu \text{mol H}_2/g_{cat})$	Theoretical a (\(\mu \text{mol O} / g_{cat} \)	
2 wt% Mn/LaAlO ₃	94	225	182	
4 wt% Mn/LaAlO ₃	114	290	364	
8 wt% Mn/LaAlO ₃	225	555	728	
4 wt% Mn/Al ₂ O ₃ (La)	81	285	364	
4 wt% Mn/BaAl ₁₂ O ₁₉	66	203	364	
4 wt% Mn/silicalite	34	272	364	

^a $Mn_2O_3 \rightarrow 2MnO + 1/2O_2$.

versibly react with common alumina-based supporting oxides at moderate temperatures to form inactive aluminate spinels [9,10]. Thermochemical analysis suggests that the combination of a stable alkaline earth (e.g. Ba) or rare earth (e.g. La) oxide with alumina will yield complex oxides of sufficient stability that they cannot form aluminate oxides. We believe that no transition metal other than manganese can remain in the +2 valence state and resist reduction to the readily sintered, and difficult to re-oxidize, metallic form under rich A/F conditions nor remain in the +3 valence state under lean conditions found in a four cycle engine exhaust. High capacity for oxygen and rapid oxidation and reduction rates are possible with such a moderate valence swing.

Fig. 4 gives the typical on-line waveforms for slow and fast switch experiments conducted on a powder catalyst sample (Pd-Mn/LaAlO₃) in the absence of reactions. An argon trace was used to locate the switch front as the gas mixture arrives at the downstream analyzer. Key properties determined by these experiments are the rates of reduction and reoxidation, the extent of specific oxidation and reduction of the oxide, and the mean oxygen level as functions of

temperature, average stoichiometry, and amplitude of the swing in O₂ partial pressure.

Due to its simplicity and its importance in emission control using TWC catalysts, the oxidation of CO by O₂ was chosen to measure the dynamic oxygen storage capacity. During the cycled experiments, the concentration CO was kept constant (0.3 vol%) while that of O_2 was alternated between 0.05 vol% and 0.20 vol%. This was achieved by having constant 0.05 vol% O_2 added to the system and adding 0.15 vol% O₂ from the switched-in flow. In effect, in the CO-rich half-cycle, it has net excess 0.2 vol% CO and in the O₂-rich half-cycle a net excess 0.05 vol% O₂. Therefore, if the catalyst does not show any oxygen storage capacity, in the O₂-rich half-cycle, the level of O₂ breakthrough will be higher than 0.05 vol%. Levels of O₂ breakthrough depend on the activity of catalysts.

3.1. $1\%Pd-10\%Ce/Al_2O_3$

Fig. 5a gives the results of ceria (10 wt% Ce) stabilized γ -Al₂O₃ supported 1 wt% Pd for the oxidation of CO. Complete conversion of CO was achieved in the O₂-rich half-cycle at \geq

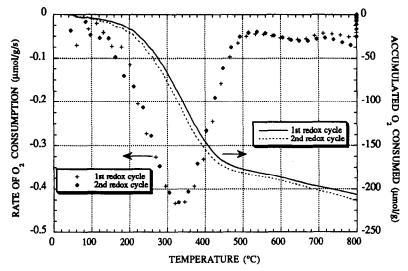


Fig. 3. TPO profile of the LaAlO₃ perovskite supported reduced MnO_x (8 wt% Mn) catalyst by 1 vol% O₂ in He; flow rate: 40 cm³/min; catalyst mass: 0.1 g; heating rate: 30°C/min.

350°C. This catalyst is much more active than the supported MnO_x catalysts. At temperatures above 350°C, levels of O_2 breakthrough decrease with increase of temperature. The levels of O_2 breakthrough at ≥ 350 °C are below 0.05 vol%. However, no complete removal of O_2 was achieved. The level of O_2 breakthrough at high temperatures is significantly higher than $LaAlO_3$ or La_2O_3 stabilized γ - Al_2O_3 supported MnO_x at the corresponding temperatures, suggesting that this catalyst has lower OSC than 8 wt%-Mn/LaAlO3 and 8 wt%-Mn/Al2O3(La). The low oxygen storage capacity of 1%Pd-10%Ce/Al2O3 is due to ceria not because of the γ -Al2O3 support since 1 wt% Pd and 10

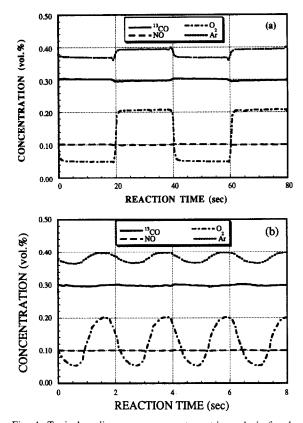
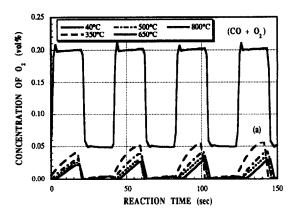



Fig. 4. Typical on-line gas mass spectrometric analysis for the dynamic switched flow reactor showing composition waveform in the absence of reaction. 20 mg of 1 wt% Pd and 8 wt% Mn supported on LaAlO₃; reactant gas composition, 0.3 vol% CO, 0.05 (reducing) and 0.2 (oxidizing) vol% O_2 with 0.36 vol% (reducing) and 0.40 vol% (oxidizing) Ar tracer in He; total flow, $100 \text{ cm}^3(\text{NTP})/\text{min}$; (a) half cycle time, 20 s; (b) half cycle time, 1 s; GHSV: 600000 h^{-1} .

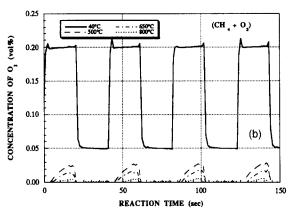


Fig. 5. Dynamic slow cycle redox reactions of CO and CH₄ with O_2 over the 10 wt%Ce-stabilized γ -Al₂O₃ supported 1 wt% Pd catalyst. Half cycle time, 20 s; reactant gas composition, (a) 0.3 vol% CO, 0.05 (reducing) and 0.2 (oxidizing) vol% O₂ with Ar tracer in He; (b) 0.05 vol% CH₄, 0.05 (reducing) and 0.2 (oxidizing) vol% O₂ with Ar tracer in He; total flow, 100 cm³(NTP)/min; catalyst mass, 0.02 g; GHSV: 600000 h⁻¹.

wt% Ce supported on LaAlO₃ also has poor oxygen storage performance (see Fig. 6a). Potential negative effect caused by presence of Pd can also be ruled out as LaAlO₃ supported 1 wt% Pd and 8 wt% Mn shows as good oxygen storage performance as LaAlO₃ supported MnO_x alone.

TPO and TPR measurement results (not given) show that MnO_x has superior oxygen storage performance than ceria. Though the use of MnO_x is critically important for achieving good oxygen storage performance, supports also play very important roles. Among the supports we investigated, $LaAlO_3$ and La_2O_3 -stabilized Al_2O_3 are the best.

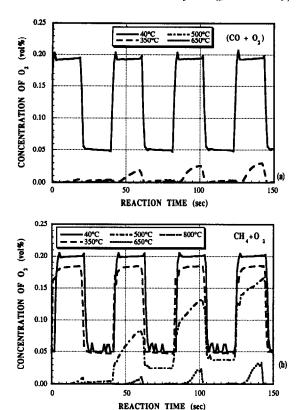


Fig. 6. Dynamic slow cycle redox reactions of CO and CH₄ with O_2 over the LaAlO₃ supported 1 wt%Pd and 8 wt%Mn catalyst. Half cycle time, 20 s; reactant gas composition, (a) 0.3 vol% CO, 0.05 (reducing) and 0.2 (oxidizing) vol% O_2 with Ar tracer in He; (b) 0.05 vol% CH₄, 0.05 (reducing) and 0.2 (oxidizing) vol% O_2 with Ar tracer in He; total flow, 100 cm³(NTP)/min; catalyst mass, 20 mg; GHSV: 600000 h⁻¹.

The dynamic switched oxidation of CH₄ by O_2 over 1 wt%Pd-10 wt%Ce/Al₂O₃ and 1 wt%Pd-8%Mn/LaAlO₃ are given in Fig. 5b and Fig. 6b, respectively. Though, in terms of oxygen storage performance, 1 wt%Pd-10 wt%Ce/Al₂O₃ is inferior to 1 wt%Pd-8%Mn/LaAlO₃ the catalytic activity of the former (not shown) is higher than the latter for oxidation of CH₄. This difference cannot be the result of interaction between Pd and Ce because 1 wt%Pd-10 wt%Ce/LaAlO₃ has similar activity as 1 wt%Pd-8%Mn/LaAlO₃. Thus, the high activity of ceria stabilized y-Al₂O₃ supported Pd is the result of high dispersion of Pd on Al₂O₃ which has a BET surface area of $140\text{m}^2/\text{g}$ compared to $16\text{ m}^2/\text{g}$ for LaAlO₃. For this reason, we may prefer to have the catalytically active noble metal component supported on high surface area supports, for instance, $LaAl_{11}O_{18}$ or La_2O_3 -stabilized Al_2O_3 . The high activity for CH_4 oxidation and reforming to form NO_x -reducing CO and H_2 shown by 1 wt%Pd-10 wt%Ce/ Al_2O_3 suggests the use of Pd-based catalyst can substantially reduce NO_x and CH_4 emission in natural gas vehicles.

3.2. Physical mixtures of Mn/LaAlO₃ and Pd/LaAl₁₁O₁₈ or Pt/CeO₂/Al₂O₃

We have demonstrated that it is not necessary to support both the OSC component (MnO_x) and noble metal on the same perovskite support. In fact, it is preferable to support the precious metal on a separate, stable, high surface area support, e.g. LaAl₁₁O₁₈, so that high dispersion of the metal component can be achieved. Based on this idea, we conducted dynamic cycle experiments with both (NO, ¹³CO, and O₂) and (NO, CH_4 , and O_2) simulated exhaust gas streams with a physical mixture of 10 mg 1 wt%Pt-8 wt%Mn/LaAlO₃ and 10 mg 1 wt%Pt-10 wt%Ce/Al₂O₃, and with a physical mixture of 10 mg 1 wt%Pt-8 wt%Mn/LaAlO3 and 10 mg 2wt%Pd/LaAl₁₁O₁₈. Previously, we found that calcination of LaAl₁₁O₁₈ hexaaluminate supports at 1150°C for 72 h can ensure that these supports remained stable during methane combustion after repeated (≈ 100) excursions to 950°C [11]. We have also examined the methane conversion activity of 1 and 2 wt% Pd and Pt catalysts supported on LaAl11O18 using temperature programmed techniques [11].

Results in Fig. 7(a) and Fig. 7(b) show that for NO reduction by CO, complete removal of O_2 and complete reduction of NO are achieved at temperatures above 300°C. This beneficial effect must be the result of the combination of the greater activity of 1 wt%Pt-10%Ce/Al₂O₃ with the greater oxygen storage capacity of the 1 wt%Pt-8 wt%Mn/LaAlO₃. For NO reduction by CH₄, complete removal of O_2 and complete NO conversion are achieved \geq 500°C.

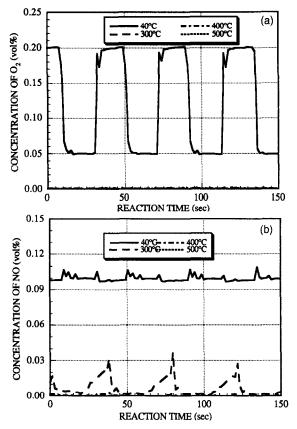


Fig. 7. Dynamic slow redox reaction of CO, NO, and O_2 over physically mixed ceria (10 wt% Ce) stabilized Al_2O_3 supported 1 wt% Pt and LaAlO₃ perovskite supported 1 wt% Pt and 8 wt% Mn catalyst at 40–800°C. Half cycle time, 20 s; reactant gas composition, 0.4 vol% 13 CO, 0.1 vol% NO, and 0.05 (reducing) and 0.2 (oxidizing) vol% O_2 with Ar tracer in He; total flow, 100 cm³(NTP)/min; catalyst mass, 50 mg each; GHSV: 240000h⁻¹.

Similar beneficial effects are also observed for the physical mix of 1 wt%Pt-8 wt%Mn/LaAlO₃ and 2wt%Pd/LaAl₁₁O₁₈ for

both NO reduction by CO and NO reduction by CH_4 . Though addition of $2wt\%Pd/LaAl_{11}O_{18}$ led to improved CH_4 oxidation activity it is much less effective than 1 wt%Pt-10 $wt\%Ce/Al_2O_3$ despite both have high surface area. The superior performance of 1 wt%Pt-10 $wt\%Ce/Al_2O_3$ to 2 $wt\%Pd/LaAl_{11}O_{18}$ for NO reduction by CH_4 may be due to higher surface area (141 vs. 95 m^2 g^{-1}) and deserves further investigation.

4. Durability of mixed three-way catalysts

Aging experiments were conducted on the physical mix of 1 wt%Pt-10 wt%Ce/Al₂O₃ and 2 wt%Pd/LaAl₁₁O₁₈ catalyst. This was done by heating repeatedly to 800°C and a single excursion to 950°C during reduction of NO by CO. We found that aging leads to some loss of oxygen storage capacity, and lower activity for NO reduction. However, the aged catalyst retains good activity for NO reduction and the conversion of NO is greater than 70% at \geq 500°C (Table 2). The loss of NO reduction activity was caused by decreasing surface area (sintering) not by the formation of complex Mn oxides. This demonstrates that our catalyst formulations not only give excellent performance for CH₄ oxidation and NO reduction but also can sustain good performance following a high temperature excursion to 950°C.

The above results demonstrate that noble metals are essential components in TWCs for

Table 2 Comparison of performance of a physical mixture of 1 wt%Pt-8 wt%Mn/LaAlO₃ and 2 wt%Pd/LaAl₁₁O₁₈ for NO reduction by CO before and after ageing at 950°C for 30 min

Temperature	Fresh catalys	it .		Catalyst aged at 950°C		
(°C)	NO conversion (vol%)		OSC activity	NO conversion (vol%)		OSC activity
		O ₂ -rich	O_2	CO-rich cycle	O ₂ -rich cycle	${ m O_2}$ breakthrough
		cycle	breakthrough			
300	85	80	small	70	72	significant
400	98	90	small	85	80	significant
500	~ 100	82	very small	98	84	small
600	~ 100	80	very small	98	76	very small
700	~ 100	78	very small	98	74	very small

the reduction of NO_x (mostly NO). When using CNG fuel, it is also very essential that the TWC convert some methane into reducing gases H₂ and CO to insure complete reduction of NO. While the supported manganese oxides show some activity for methane conversion, especially above 500°C, their activity under reducing conditions is low relative to the noble metals. Therefore, to be effective for NO_x reduction using CNG fuels with lower CO and higher CH₄ levels in the engine exhaust gases, our manganese components for enhanced oxygen storage must be combined with a very active noble metal-based component. We anticipate either adding Pd or Pt to the MnO_x/LaAlO₃ or adding supported noble metals as a separate phase for both NO reduction and the production of reducing gas.

5. Conclusions

MnO_x supported on LaAlO₃ perovskite is superior to ceria in several ways: (i) it directly and rapidly absorbs oxygen without need for noble metals to promote the rate of oxygen absorption; (ii) it exhibits a larger capacity for oxygen storage over a wide temperature range; (iii) it directly oxidizes CH₄; and (iv) with assistance of noble metals, it shows steam reforming or partial oxidation activity (converting CH₄ and steam into CO and H₂). This ability to

generate CO and H_2 under oxidizing conditions is especially important for reducing NO_x emissions in NGV exhaust gas.

Acknowledgements

This work was funded by the United States Department of Energy under its SBIR Program and supported by Goremotive Industries, Inc.

References

- D. Golomb and J.A. Fay, The Role of Methane in Tropospheric Chemistry, Energy Laboratory, Cambridge, MA, 1989.
- [2] C.S. Weaver, SAE Paper No., 892133 (1989).
- [3] M.A. DeLuchi, R.A. Johnston and D. Sperling, SAE Paper No., 881656 (1988).
- [4] B. Hillemann, Chem. Eng. News, 67 (1989) 25.
- [5] S.H. Gadle, P.A. Mulawa, D.L. Hilden and R. Halsall, Exhaust Emissions from Dual-Fueled Vehicles Using Compressed Natural Gas and Gasoline, Air and Water Management Association, Pittsburgh, PA, 1990.
- [6] H.S. Gandhi, A.G. Piker, H.K. Stepien and M. Shelef, SAE Paper No., 760201 (1976).
- [7] R.K. Hertz, J.A. Sell and D.R. Monroe, GMR Report, 3156 (1979).
- [8] D.M. Lowe, M.I. Gussman and J.G. McCarty, Scientific Bases for the Preparation of Heterogeneous Catalysts, Vol. 2, Louvain-la-Neuve, 1994, pp. 39-46.
- [9] H. Bolt, Transition Metal Aluminate Formation in Alumina-Supported Model Catalysts, Ph.D. Dissertation, Universiteit Utrecht, The Netherlands, 1994.
- [10] P.E. Marti, M. Maciejewski and A. Baiker, Appl. Catal., B4 (1994) 225.
- [11] J.G. McCarty and Y.-F. Chang, Scripta Met. Mater., 31 (1994) 1115.